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Abstract A general analytical expression for the elemon energy specmm and the polaron 
binding energy for different eleclronic subband bound stat= in a quantum well (Qw) is presented. 
The eMcts of the electmn-optical-phonon interaction, the finite confinement potential. the 
difference in the electronic effective masses across the interface. and the eleetmn subband state 
are considered in this paper. The wrrect three-dimensional and twodimensional results are given 
85 the limit uses  when the well width varies from infinity to zero. The expression is numerically 
applied to the G~A~/AI,G~I,A~ QWS with seve@ different aluminium concentrations x .  Some 
properties of the polaron are discussed. 

1. Introduction 

The property of a polaron confined in a quantum well (QW) has been a topic of considerable 
interest in recent years. The QW structure is a low-dimensional layered s t ~ c t u r e  and is 
frequently fabricated from weakly ionic semiconductors (the GaAs/AI,Gal-,As caSe is a 
typical example) and therefore the interaction of the electron with polar-optical phonons 
is in general important for the determination of electron dynamics in such structures. 
Most of the early work treated the polaronic effect in Qw structure by considering that 
the electron has a quasi-two-dimensional (QZD) character and the phonons have a three- 
dimensional (3D) character regardless of the influence of the interfaces of the system on the 
phonons, and especially on the long-wavelength longitudinal optical (LO) phonons. This was 
considered to be plausible because of the small differences in the mechanical and electrical 
properties throughout the QW. Using this approximation, many researchers 11-51 studied 
the properties of the electron-phonon interaction system in a QW and obtained many useful 
results. However, after some fundamental investigations by several groups [6-l4], it is clear 
that the real situation is rather different. The polar-optical phonons in a layered structure 
behave as in a confined system; its penetration from a given layer into the adjacent layers 
is really inhibited owing to rather differect vibration frequencies in the layers. There are 
three types of optical phonon mode which should be considered in a reliable polaron theory 
for use in the QW case: 

(1) the four branches of interface optical (Io) phonon modes; 
(2) the confined slab L o  mode in the well; 
(3) the half-space LO mode in the barrier. 
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On the basis of the considerations mentioned above, some more accurate theories for 
polarons in Qws have been proposed recently. Using the second-order perturbation method, 
some workers [ 15,161 studied the properties of the QZD polaron. It was soon realized that 
it is necessary to incorporate all the energy states as intermediate states in  the calculation; 
otherwise it is impossible to obtain the correct result. More recently, Hai et a1 [ 171 improved 
their work by incorporating the full subband energy spectrum as intermediate states in their 
second-order perturbation calculation. After a tedious analytical and numerical calculation, 
they gave a better numerical result for the binding energy and effective mass which has 
correct limit approaches for a polaron in a GaAs/AI,Gal-,As Qw. 

More recently, the present authors 118, 191 have proposed a variational calculation 
method for treating the quasi-low-dimensional electron-phonon interaction system. This 
method is simple but very effective. The main advantage of our method is that an analytical 
expression for the binding energy of the Q2D polaron can be obtained, in which the transition 
from the 2D to the 3D limit is correctly obtained. From the analytical expression the relative 
importance of every phonon mode as a function of the well width, the well potential height 
and the concentration of the compounds is clearly shown. 

The purpose of the present paper is to report a more advanced investigation of 
the properties of a Q2D polaron in a Qw. All the possible electron-plical-phonon 
interactions in the Qw structure, the effects of the finite electronic confinement potential, 
the electronic subband states, and the electron band mass difference on the two sides of 
the interfaces are considered in this paper. An improved theoretical result for the polaron 
binding energy with different electronic subband states of the QzD electron is presented 
analytically. In the limits of infinitely wide and infinitely narrow wells, our expression 
gives the correct 3D and 2D results, respectively. In the infinite QW approximation or 
same-electron-band-mass approximation, the expression agrees with our previous papers. 
The expression is numerically applied to GaAs/AI,Gal_,As Qws with several different 
aluminium concentrations x. The contributions and the relative importance of the IO.. 
confined LO- and half-space Lo-phonon modes to the polaron corrections are shown clearly 
as the well width is varied from infinity to zero. 

The paper is organized as follows: in section 2, first, we give a short review of the 
Hamiltonian, next the variational calculation is presented, and then the analytical result 
for the bound-state energy and the polaron binding energy of the Q2D electron-phonon 
interaction system is given. The numerical results for GaAs/Gal-,AI,As QWs (with x = 0.3 
and 1.0) are also shown graphically in section 2. A discussion and the conclusion are given 
in section 3. 

2. Calculation a n d  results 

The Hamiltonian of an electron interacting with optical phonons in a finite deep QW made 
up of two different polar semiconductors has been described in our previous paper [19]. 
In the present paper a more accurate Hamiltonian model is considered by including the 
difference in the electron effective masses across the interface. Here we give a short review 
of it for completeness. The Hamiltonian has seven parts and is written 

H = He + Hi0 + %IO + HLO + &LOI + HLOZ + H e-LO2. (1) 

It is a sum of the Hamiltonians of, in the order given above, the bare confined electron, 
the free 10 phonon, the electron-IO-phonon interaction, the free confined LO phonon in the 
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well material, the electron-confined Lo-phonon interaction, the free half-space LO phonon 
in the barrier material, and the electron-half-space Lo-phonon interaction. The Hamiltonian 
is taken from the fundamental work in [6,10]. 

In  this paper the effective band mass and rectangular QW approximation are used; the 
electron band mass and the QW confinement potential are taken as 

where mb,. (mh2)  is the electron band mass in the well (barrier) material. U’ = 2d is the 
width of the QW. 

The above Hamiltonian is so complicated that accurate solutions of the eigenfunction 
and eigenvalue are impossible; therefore some approximation method must be used. We 
adopt a variational method which has been proposed in our previous paper [ 191. The trial 
wavefunction I$) of the Hamiltonian is chosen as 

I$) = UI0)IQO (4) 

where I@,) is the eigenstate of the Hamiltonian He. Here we are only interested in the 
bound state of the confined electron and assume that the momentum of the electron in the 
x-y plane is zero. Therefore, the eigenfunction @I is the function of the z component only. 
10) is the phonon vacuum state. U is a unitary transformation operator, which is given by 

U = exp z [ F k m ( Z )  exp(-ik . p)aim - HC) + C ( Q k . r : ( z )  exp(-ik. p)&, - HC) ( k.m k.k, 

in which 

Gknp(Z) = g k n p l k n p ( Z )  (8) 

where fkm, qk,k, and gknp are the variational parameters which will be subsequently 
determined by standard variational calculations. 

@,(z) is the eigenfunction of the bare confined electron described by the Hamiltonian 
He, which is either even or odd in the z direction and given by 
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where the wavenumbers kl and k; are related to the electron subband energy E, by 

The form of the normalization constant NI depends on the condition determining the 
eigenstate. According to Bastard’s [ZO] work, the corresponding bound-state equations are 
determined by the boundary conditions that 4,(z) and m;’(aOI/az) are both continuous 
at the interfaces (z = kf). The electron subband energy E1 can be determined from the 
boundary conditions. Because this is a standard quantum mechanics textbook problem and 
the calculation details are well known, there is no need to repeat them here. Then N, can 
be expressed as a function of the electron subband energy E, only: 

with 

The expectation value of the Hamiltonian of the Q2D polaron system is 

E = (@lHl@) = (QI(OIU+HUIO)I@~). (15) 

After lengthy variational calculation, we finally obtain the expression for the energy spectrum 
E of the Q2D electron-phonon interaction system in any electronic subband state, which is 
given by 

E = E1 - Eb. (16) 

Eb is the polaron binding energy which is a sum of the interaction energies of the electron 
with the confined LO phonon in the well, the half-space Lo phonon in the banier material, 
and the IO phonon, respectively. It takes the form of 

Eb = EWI + ELOZ + Eio. (17) 

If we take h ~ ~ l  as the unit of energy, and the polaron radius R, (= (h/ZmblmL,)l/z) 

(a) The interaction energy of the QZD electron with the confined Lo-phonon modes in 

as the unit of length, then the expression can be given in a simple form. 

the well material is given by 
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with 

where m < int(W/ao). a0 and (YI are the lattice constant and the electron-Lo-phonon 
coupling constant of the well material, respectively. 

(b) The interaction energy of the electron with the half-space Lo-phonon modes in the 
barrier materials is given by 

with 

WLZ mbz 
WLI mbl 

v, = - - + 2(V0 - E,) 

where 012 is the electron-Lo-phonon coupling constant of the barrier material. O L ~  and O L ~  

are the Lo-phonon frequencies in the well and barrier materials, respectively. 
(c) The interaction energy of the electron with the 10 phonons has four terms correlated 

with the four branches of the IO phonon and is written as 

where the index p = +. - refers to the symmetric and antisymmetric lo-phonon modes, and 
U = +, - to the high- and low-frequency 10-phonon modes, respectively. The dispersion 
relation of the 10 phonon with the (a. p )  indexes is given by the following equations: 

where 

with 
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where p = I or p = -1 refers to p =+ or p = -. 

is given by 
The interaction energy of the electron with the branch of 10 phonons specified by (0, p )  

where 

with 

D/ cosh(2kd) zk d k/ sinh(2kd) kCl + - + - ( 2) k:+k2 
1 

[k: + k2 
&(k) = NI - 

where ql (m2) is the transverse optical (TO) phonon frequency in the well (banier) material. 
Using the expressions above, one can easily calculate the energy spectrum and the 

individual contribution of every phonon mode to the polaronic correction. As far as we 
know, the present paper is the first work which gives the full energy spectrum of the QZD 
electron-phonon interaction system in a QW structure. We feel that these expressions are 
useful for investigators working in this field. 

Next, we apply equations (17)-(37) to the GaAs/Gat-,Al,As QW to give some numerical 
results. The material parameters used in the calculation are the same as in [I91 which are 
taken from [21]. Note that Gal-,AI,As is a ternary mixed crystal; there exist two pairs 
of LO- and TO-phonon modes. In this paper we use the effective LO- and To-phonon mode 
approximation [21], Figure 1 shows the polaron binding energies in the lowest electronic 
subband state for x = 0.3 and 1.0 as functions of the well width. The contributions from 
the lo-, confined Lo- and half-space Lo-phonon modes are also shown as separate lines. 
Figure 2 gives the polaron binding energies for different electronic subband states with 
x = 0.3 and 1.0. 



Polaronic effect on the electron energy spectrum in a quantum well 103 13 

1.5 

A 

_I 
r - .o d 

ic 
8 
>\ 
CT 

c 
W 

i 

W 

0.5 

0.0 
0.0 2.0 4.0 6.0 8.0 10.0 12.0 

2.5 -. - 
i. 

._.... 

( b )  



10314 Ruisheng Zheng et a1 

1.4 

n 

3 
c 
_I 

e. 
.3 

1.2 
W 
x 
in 
L 
a c 1.1 

LLi 

1.0 I I I I I I , 
0.0 2.0 4.0 6.0 8.0 I (  

WjF?,) 

2.5 

_I 2 2.0 - 
8 
x 
in 
e, 
c 

W 

*d 

L .5 

.o 

1 .o 
0.0 2.0 4.0 6.0 8.0 

W R F J  
Figure Z Thc total polaron binding energy at different electronic subband states as a function 
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3. Discussion and conclusion 

With a simple analytical calculation similar to 1191. one can easily find that our theory 
gives correct limit results in the 2D and 3D limit cases, which can also be seen from figure 1 
clearly. When the width of the QW is sufficiently large, the polaron binding energy reduces 
to o r l h ~ ~ ~  and, when the QW width decreases to zero, the polaron binding energy goes 
to o r 2 h o ~ .  In the approximate cases, such as the infinite-height QW (VO -+ CO) or the 
same-electron-band-mass approximations (mbl = mbz = mb), the expressions are reduced 
to those given in our previous papers [18,19], respectively. 

In figure 1, the broken curve represents the result with the approximation mbl = mb2. 
which was given in our previous paper [19]. As shown in figure 1, if the QW width is 
larger than about 2R, the difference between the electron band masses in the well and 
barrier materials need not be considered but, when the well width is sufficiently narrow, the 
electron envelope function penetrates into the barrier material region obviously, and then 
the mass difference will have an obvious influence. 

In  order to compare the polaron binding energy given by the present variational method 
with that obtained by the perturbation method, we plot the numerical result taken from the 
paper of Hai er a/ [I71 as a dotted curve in figure 1. One can see that the two results agree 
with each other, except for a little quantitative difference. After some analysis we think 
that this small difference may arise partly from the small fundamental differences between 
the Hamiltonians and parameters VO in the two studies. In the present paper, we use the 
expression proposed by Adachi [21] as the parameter VO, which is 

0 < x < 0.45 
0.45 < x < 1.0 

for 
0.43 + 0 . 1 4 ~  

On the other hand, Hai et a1 used an empirical expression given by 

Vo = 0.6Eg = 0.6(1.155x + 0.37~’). 

We have noted that the binding energy obtained in the present variational calculation 
exhibits a minimum at a very narrow well width (about one or few monolayers) for the AI 
concentration x < 0.5. This feature was also found in [17]. It is caused by two competing 
effects, namely the drastic decrease in the contribution of the 10 phonons and the drastic 
increase in the contribution of the LO phonons in the barrier materials as the well width 
decreases to zero. The sum of the two competing effects is sensitive to the selection of 
the calculation method and the parameters of the QW. Thus we feel that this minimum is 
only from the theoretical calculation and may not occur in a real sample of very narrow QW 
because the continuous model is invalid in this range. 

From figure 2, one can see that, for the excited subband state, the polaron binding energy 
increases as the well width decreases up to the value of the free-bulk-polaron binding energy 
in the barrier material at a critical well width where the polaron state is really an extended 
state. 

In conclusion, we have reported in the present paper a more advanced investigation on 
the properties of a QZD polaron. A general analytical expression for the electron energy 
spectrum and the polaron binding energy for different electronic subband states of the QZD 
electron-phonon interaction system is presented analytically. The expression is applied to 
GaAs/AI,Gal-,As Qws numerically with several different aluminium concentrations x. The 
effects of the electronic subband state, the phonons and the confinement potential on the 
polaron corrections are shown clearly as the well width varies from infinity to zero. 
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